ECS455: Chapter 3 Poisson process and Markov chain

3.2 Markov Chain

Dr.Prapun Suksompong prapun.com/ecs455

Office Hours:
BKD 3601-7
Tuesday 9:30-10:30
Friday 14:00-16:00

Small slot Analysis (Transition Prob.)

$$
\mathrm{K}_{\mathrm{i}+1}=\mathrm{K}_{\mathrm{i}}+(\# \text { new call request })-(\# \text { old-call end })
$$

The labels on the arrows are probabilities.

$$
\begin{aligned}
& \mathrm{P}[0 \text { new call request }] \approx 1-\lambda \delta \\
& \mathrm{P}[1 \text { new call request }] \approx \lambda \delta \\
& \hline \mathrm{P}[0 \text { old-call end }] \approx 1-\mathrm{k} \mu \delta \\
& \mathrm{P}[1 \text { old-call end }] \approx \mathrm{k} \mu \delta
\end{aligned}
$$

Small slot Analysis: Markov Chain

- Case: $\mathrm{m}=2$

Markov Chain

- One important property: Memoryless
- It retains no memory of where it has been in the past.
- Only the current state of the process can influence where it goes next.
- Very similar to the state transition diagram in digital circuits.
- If the system is currently at a particular state, where would it go next on the next time slot?
- In digital circuit, the labels on the arrows indicate the input/control signal.
- Here, the labels on the arrows indicate transition probabilities.
- We will focus on discrete time Markov chain.

Global Balance Equations

- Easier approach for finding the long-term probabilities

$$
P=\left[\begin{array}{ll}
2 / 5 & 3 / 5 \\
1 / 2 & 1 / 2
\end{array}\right]
$$

Let p_{k} be the long-term probability that $K=k$.

Small Slot Analysis: Markov Chain

- Case: $m=2$

Let p_{k} be the long-term probability that $K=k$.

$$
\begin{aligned}
& 1-\lambda \delta-\mu \delta \\
& \text { lobal Balance equations }
\end{aligned}
$$

$p_{0}+p_{1}+p_{2}=1$

$$
\downarrow \text { Global Balance equations }
$$

$$
\lambda \delta p_{0}=\mu \delta p_{1} \quad \lambda \delta p_{1}=2 \mu \delta p_{2}
$$

$$
p_{0}=\frac{1}{1+A+\frac{A^{2}}{2}}, p_{1}=A p_{0}, p_{2}=\frac{1}{2} A^{2} p_{0}
$$

$$
p_{b}=p_{m}
$$

Truncated birth-and-death process

- Continuous-time Markov chain
- More general than $M / M / m / m$

The stationary PMF always exists and is given by $p_{i}=\frac{R_{i}}{\sum_{j=0}^{c} R_{j}}$ where $r_{j}=\frac{\lambda_{j-1}}{\mu_{j}}$, $R_{j}=r_{j} r_{j-1} \cdots r_{1}$ for $j=1,2, \ldots, c$, and $R_{0}=1$.

