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Small slot Analysis (Transition Prob.)
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Ki+1 = Ki + (# new call request) – (# old-call end)

P[0 new call request] ≈ 1 -  

P[1 new call request] ≈  

P[0 old-call end] ≈ 1 - k 

P[1 old-call end] ≈ k 

k+1kk-1

  1 k k      1 k   

     1 1 1k k k          

The labels on the arrows are 

probabilities.



Small slot Analysis: Markov Chain
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 Case: m = 2
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Markov Chain
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 One important property: Memoryless

 It retains no memory of where it has been in the past.

 Only the current state of the process can influence where it 
goes next.

 Very similar to the state transition diagram in digital 
circuits.

 If the system is currently at a particular state, where would it go 
next on the next time slot?

 In digital circuit, the labels on the arrows indicate the 
input/control signal.

 Here, the labels on the arrows indicate transition probabilities. 

 We will focus on discrete time Markov chain.



Global Balance Equations
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 Easier approach for finding the long-term probabilities
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Let pk be the long-term 

probability that K = k.
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Small Slot Analysis: Markov Chain
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 Case: m = 2
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probability that K = k.
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M/M/m/m Queuing Model

Global Balance equations



Truncated birth-and-death process
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 Continuous-time Markov chain

 More general than M/M/m/m


